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Abstract

This paper deals with active damping control problems of robot manipulators with oscillatory bases. A first

investigation of two-time scale fuzzy logic controller with vibration stabilizer for such structures has been proposed, where

the dynamics of a robotic system is strongly affected by disturbances due to the base oscillation. Under the assumption of

two-time scale, its stability and design procedures are presented for a multiple link manipulator with multiple dimension

oscillation. The fast-subsystem controller will damp out the vibration of the oscillatory bases using a PD control method.

Hence, the slow-subsystem fuzzy logic controller dominates the trajectory tracking. It can be guaranteed the stability of the

internal dynamics by adding a boundary-layer correction based on singular perturbations approach. Experimental results

have shown that the proposed control model offers several implementation advantages such as reduced effect of overshoot

and chattering, smaller steady state error, and a fast convergent rate. The results of this study can be feasible to various

mechanical systems, such as mobile robot, gantry cranes, underwater robot, and other dynamic systems mounted on

oscillatory bases.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The interest toward complex robot system is expanding for new application areas. An example of such a
system is a dexterous manipulator mounted on an oscillatory base, which is, associated with robotic
manipulators installed on vessels or ocean structures, where the dynamics of a robotic system is strongly
affected by disturbances due to the base oscillation. In literature, such a system is known under the name
macro–micro system or flexible structure mounted manipulator system (FSMS) [1].

Two main control subtasks for FSMS have been identified [2]: (1) base vibration suppression control and (2)
design of control inputs that induce minimum vibrations. Most studies investigating oscillatory base
manipulators falls examines inertial task space and external disturbances [3]. The primary issues of this kind of
problem are manipulator decoupling, base dynamics and damping of base oscillation, for which several
approaches, such as task-space feedback [4,5], filtering command [6], path planning [5], acceleration feedback
[7], and active damping [8,9], have been proposed. Additionally, numerous studies have developed control
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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schemes for macro- and micro-manipulators [9,10]. One area of research involves determining trajectories that
eliminate or minimize induced vibration [10]; however, such schemes are not useful for controlling the
vibration once it occurs. An inertial damping scheme using a micromanipulator to dampen vibration is an
attractive compromise between controlling system complexity and system performance [9,11]. However, all of
the above papers never discussed the intelligent controller for such structures. Moreover, previous studies have
several limitations, and have ignored many important issues, such as the interaction of the link and base
oscillation, inertia uncertainties, and lack of availability of some states, among others.

Previous work by the authors [12] demonstrated the feasibility of the proposed control scheme using
hierarchical supervisory fuzzy control. Generally, without the presence of additional sensors, strain gauges,
and accelerometers, it is assumed that the displacement of the oscillatory base cannot be measured. Therefore,
the controller is based on the lack of availability of the base oscillation states. Hence, the controller design of
this literature [12] is founded on supervisory to deal with the subsystems interactions.

To maintain reasonable computational loading, a controller based on a reduced-order model has
been proposed [13,14]. In recent years, singular perturbation theory has been shown to be a conve-
nient strategy for ‘reduced-order modeling’. It is well known that the dynamics of singularly perturbed
systems can be approximated by the dynamics of the corresponding reduced-order and boundary-
layer subsystems for sufficiently small values of the singular perturbation parameter. The aim is to
simplify the software and hardware implementation of the control algorithms while improving their
robustness.

Therefore, the paper concentrates on fuzzy logic using singular perturbation approach for robot
manipulators mounted on oscillatory bases. The proposed control methodology is based on the measurement
and feedback of the joint and base oscillatory states. It is different from the reference [12], which the
oscillatory states are not available in that paper. This research is the extension of the previous work [12] and
present a new controller by singular perturbation approach. The controller has two separate feedback loops
for positioning and damping, and the damping control is independent of manipulator positioning control.
Consequently, the proposed damping control methodology can be easily added to existing position controlled
robot manipulators.
2. System configuration

In this section, a mathematical model of the manipulator is obtained from independently known dynamics.
Fig. 1 presents the conceptual model of a manipulator mounted on an oscillatory base. The oscillatory
dynamics of the base can be simplified as a lumped mass with a spring. The dynamic equation of the motion is
Fig. 1. Conceptual model of compliant manipulators.
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represented as [8,12].

Mb €xb þ Cb _xb þ Kbxb ¼ f d , (1)

where xb denotes the deflection of the base from its equilibrium point. Moreover, Mb and Kb are the inertia
matrix and stiffness matrix, respectively, and Cb is the damping matrix. In addition, the term of fd is the
excitation force acting on an oscillatory base.

Furthermore, the dynamics of the n rigid link manipulators with revolutional joints can be expressed as

MrðqÞ €qþ V ðq; _qÞ þ F v _qþ Fd ð _qÞ þ GðqÞ ¼ t (2)

with qðtÞ 2 <n as the joint variable vector and t(t) as the control input. The inertial matrix Mr(q) is assumed to
be a bounded and positive definite matrix, where V ðq; _qÞ is the Coriolis/centripetal forces, F v _q is viscous
friction, F dð _qÞ is dynamic friction, and G(q) is gravity. It is assumed that Mr(q)�2V is a skew-symmetrical
matrix. Moreover, the dynamics of Eq. (2) may also be rewritten as

MrðqÞ €qþ Crðq; _qÞ ¼ t (3)

with nonlinear terms represented by

Crðq; _qÞ ¼ V ðq; _qÞ þ F v _qþ Fd ð _qÞ þ GðqÞ.

When the two systems are serially combined, detailed analysis demonstrates that the overall system can be
represented as

MrðqÞ MbrðX Þ

MT
brðX Þ Mb þMb=rðX Þ

" #
€q

€xb

( )
þ

Crðq; _qÞ þ Cb=rðX ; _X Þ

Cb _xb þ CbrðX ; _X Þ

" #
þ

0 0

0 Kb

" #
q

xb

( )
¼

t

0

� �
, (4)

where Mb/r(X) and Mbr(X) denote the inertia matrices for manipulator/base coupling, which can be referred to
as the inertial coupling matrix. Additionally, both Cb=rðX ; _X Þ and CbrðX ; _X Þ are nonlinear coupling terms, and
X ¼ ½qT xT

b �
T. The inertia matrix of the overall system M (X) shown in Eq. (4) is symmetric and positive

definite.
Moreover, the inertia matrix M (X) that is uniformly bounded both from above and from below, namely,

satisfies

m InþppMðX Þpm̄Inþp; 8X 2 <
nþp,

where m and m̄ are positive constants, and Inþp 2 <
ðnþpÞ�ðnþpÞ is the identity matrix. Here, p is defined as the

number of degrees of freedom (dof) of the oscillatory base.
For practical applications, one mode (which is coupled with translation and rotation) is frequently

dominant in structural oscillation. Controlling translation implies that rotation is also controlled. Therefore,
this study focuses on translate oscillation as an initial study only. The assumption is the same as that in
literature [8]. For exposition convenience, this work considers a special case, a two-link planar elbow arm
mounted on an oscillatory base (Fig. 2), with a two dof manipulator and one-dof base motions.

In addition, the more description on the modeling process is shown in Appendix A.
Fig. 2. Schematic view of the manipulator mounted on an oscillatory base.
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3. Singular perturbation approach

In using input/output (I/O) feedback linearization to design a controller for flexible link arm is shown in the
author previous work [13]. In this section, we will use the same technique to derive a singular perturbation
formulation for a multiple link manipulator with multiple dimension oscillatory under two-time scale
assumption. We will complete the design in Section 4 by using singular perturbation approach theory to design
a controller that provides a boundary-layer correction to stabilize the oscillatory modes.

3.1. Inverse system dynamics

Let us define the inverse of the mass matrix

H11 H12

H21 H22

" #
¼

Mr Mrb

MT
rb Mb þMb=r

" #�1
. (5)

We multiply (4) by (5) from the left, rearrange terms, and write

€q

€xb

" #
¼ �

H11 H12

H21 H22

" #
Crðq; _qÞ þ Cb=rðX ; _X Þ

Cb _xb þ CbrðX ; _X Þ

" #
�

H11 H12

H21 H22

" #
0 0

0 Kb

" #
q

xb

" #
þ

H11 H12

H21 H22

" #
t

0

� �
. (6)

Therefore, Eq. (6) can be rewrite as the following form:

€q ¼ �H11ðCrðq; _qÞ þ Cb=rðX ; _X ÞÞ �H12ðCb _xb þ CbrðX ; _X ÞÞ �H12Kbxb þH11t, (7)

€xb ¼ �H21ðCrðq; _qÞ þ Cb=rðX ; _X ÞÞ �H22ðCb _xb þ CbrðX ; _X ÞÞ �H22Kbxb þH21t. (8)

Performing a feedback linearization on (7) amounts to select

t ¼ ðH11Þ
�1
ðH11ðCrðq; _qÞ þ Cb=rðX ; _X ÞÞ þH12ðCb _xb þ CbrðX ; _X ÞÞ þH12Kbxb þ uÞ. (9)

Using standard I/O feedback linearization technique, then substitute for €q using (7), to obtain the reduced-
order dynamics

€q ¼ u, (10)

€xb ¼ �H21ðCrðq; _qÞ þ Cb=rðX ; _X ÞÞ �H22ðCb _xb þ CbrðX ; _X ÞÞ �H22Kbxb

þH21ðH11Þ
�1
ðH11ðCrðq; _qÞ þ Cb=rðX ; _X ÞÞ þH12ðCb _xb þ CbrðX ; _X ÞÞ þH12Kbxb þ uÞ

¼ � ðH22 �H21ðH11Þ
�1H12ÞCb _xb � ðH22 �H21ðH11Þ

�1H12ÞCbrðX ; _X Þ

� ðH22 �H21ðH11Þ
�1H12ÞKbxb þH21ðH11Þ

�1u. ð11Þ

Eq. (11) can be rewrite as

€xb ¼ �Ha
22Cb _xb �Ha

22CbrðX ; _X Þ �Ha
22Kbxb þHau, (12)

where u(t) is an auxiliary input and the Schur complements are defined as

Ha
22 ¼ H22 �H21ðH11Þ

�1H12,

Ha ¼ H21ðH11Þ
�1.

As shown in the first row of (6), the manipulator rigid motion is mostly decoupled from the base oscillation.
The base motion has no effect on the joint motion. They are coupled only through the control input u.
Moreover, the given joint trajectory qd(t) in Eq. (10) can be achieved by appropriate selection of u. However,
selecting based only on the desired joint angle subsystem performance does not guarantee a stable inverse
system as the zero dynamics are not stable for such system. Hence, we will show how to select u(t) to achieve
the desired joint angle performance as well as to stabilize the inverse dynamics using a time-scale separation in
the next subsection.
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3.2. A singular perturbation approach

We now use singular perturbation theory to stabilize the zero dynamics after input/output feedback
linearization. As will be seen, this affords greater accuracy of the time-scale separation assumption. A typical
procedure for singular perturbation theory is reviewed in Ref. [15].

The control scheme takes advantages of the fact that base vibration is of relatively high frequency compared
to the rigid manipulator motion required to perform a task. The separation of bandwidths, or time constants,
between the position and vibration control loops allows then to be considered separately. Therefore, we use
the singular perturbation approach to derive a slow subsystem corresponding to the joint angle, and a fast
subsystem describing the oscillatory base motion in this section. To singularly perturb the feedback-linearized
system, we rewrite (10) and (11) as

€q ¼ u, (13)

€xb þH
a=b
22 _xb þH

a=br
22 ðX ;

_X Þ þH
a=Kb
22 xb ¼ Hau, (14)

where

H
a=b
22 ¼ Ha

22Cb,

H
a=br
22 ¼ Ha

22Cbr,

H
a=Kb
22 ¼ Ha

22Kb.

For the singular perturbation analysis to work, we must put (13) and (14) in the standard form and solve for
fast variables. Since the oscillatory state is faster than the joint angle, we must extract an appropriate
parameter from the fast subsystem first. We define

Kcl ¼ H
a=Kb
22 , (15)

where Kcl indicates the closed-loop stiffness and Kb is the open-loop stiffness appearing in Eq. (4). It is more
accurate to introduce singular perturbation based on Kcl rather than on Kb. Therefore, we introduce a positive
scaling factor k and factor Kcl as

Kcl ¼ k ~K
cl
, (16)

where ~K
cl
is an invertible constant matrix and is independent of the closed-loop stiffness factor k.

Then define new variables e2 ¼ (1/k) and e2x(t) ¼ xb(t). We are concerned with the case where the stiffness k
is sufficiently large, and the main objective of our control is to let the rigid motion qr(t) track a desired
trajectory q(t).

Here, rewriting (13) and (14) in terms of x(t), and e we have

€q ¼ u, (17)

�2 €x ¼ �H
a=b
22 ðq; _q; �

2x; �2 _xÞ�2 _x�H
a=br
22 ðq; _q; �

2x; �2 _xÞ � ~K
cl
ðq; �2xÞxþHaðq; �2xÞu. (18)

Recall that the control objective is to determine the control input u to let ðq; _qÞ track ðqd ; _qdÞ sufficiently
closely and to stabilize systems (17) and (18). Therefore, a composite (fast and slow) controller is designed
based on the partially decoupled model in Eqs. (17) and (18). Define the control input u to have two parts

u ¼ ūðqÞ þ uf ðxbÞ, (19)

where ūðqÞ is the slow control component and uf ðxbÞ is a fast control component. Setting e ¼ 0 yields the
slow dynamics

€̄q ¼ ū (20)

and

0 ¼ �H̄
a=br

22 �
~̄K
cl
x̄þ H̄

a
ū. (21)
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Therefore, the slow manifold equation can solved from Eq. (21)

x̄ ¼ ð ~̄K
cl
Þ
�1
ð�H̄

a=br

22 þ H̄
a
ūÞ. (22)

We use the overbar to denote evaluation of functions with e ¼ 0. Furthermore, to derive the fast subsystem,
select new states B1 � x� x̄, B2 � �_x, and write (18) as

�_B2 ¼ �H
a=b
22 �B2 �H

a=br
22 �

~K
cl
ðB1 þ x̄Þ þHau. (23)

Moreover, we introduce a time-scale change of s ¼ t/e. Setting e ¼ 0 and substituting for x̄ from Eq. (22),
the expression of fast subsystem can now be obtained by combining (22) and (23):

dB1
ds
¼ B2, (24)

dB2
ds
¼ � ~̄K

cl
B1 þ H̄

a
uf . (25)

The state-space representation of the dynamics is

d

ds

B1
B2

" #
¼

0 1

� ~̄K
cl

0

" #
B1
B2

" #
þ

0

H̄
a

� �
uf . (26)

4. Controller design

The control objective attempts to determine the input control torque t, such that base oscillation xb damps
out as efficiently as possible while the joint angle q follows the desired tracking. Using two-time scale theory, ū

and uf are adopted in two different time scales. It is intended that uf affects mainly on (25), base motion and ū

principally on (20), decoupled joint angle dynamics. In accordance with (20), (24) and (25), uf can be chosen to

generate stable zero dynamics provided that ð ~̄K
cl
; H̄

a
Þ can be stabilized. When ð ~̄K

cl
; H̄

a
Þ is controllable, there

are no zero dynamics, as uf can be chosen to control ½BT1 BT2 �
T. Consequently, the slow part, x̄ in Eq. (22),

depends on joint angle trajectories and the control, ū, was used to construct joint tracking controller. The fast
part, z1, is a boundary-layer correction added for stabilization.
4.1. Fuzzy tracking controller (FTC)

A primary goal in this subsection is to control actively trajectory tracking using a decomposed parallel fuzzy
control approach. This study demonstrates the general methodology by decomposing a large-scale system into
smaller subsystems in a parallel structure, such that the proposed fuzzy control methodology can be applied
for investigating a complex system. A fuzzy logic controller is designed utilizing the joint tracking error
between the desired and measured e (e ¼ yd�y) and the joint velocity error between the desired and measured
_e to implement an input–output feedback linearization/singular perturbation approach. To implement the
proposed technique for a two-link robot manipulator, the whole system is decomposed into two subsystems.
The first subsystem adopts joint tracking error e1 (e ¼ yd�y) and its derivatives _e1 as local variables for link 1
subsystem. The second subsystem takes e2 and _e2 as local variables for link 2 subsystem. Therefore, the fuzzy
logic controller 1 (FLC1) takes e1 and _e1 as inputs to construct the local control action ū1, whereas fuzzy logic
controller 2 (FLC2) uses e2 and _e2 to take another control action, ū2. Thus, at the local level, each subsystem is
designed separately. The fuzzy logic rule base for each subsystem is designed based on the dynamic response
for each link when a control force is activated on the robotic system.

This investigation uses the adaptive network-based fuzzy inference system (ANFIS) to optimize fuzzy
IF-THEN rules and membership functions for deriving a more efficient fuzzy control. The main idea in the
learning procedure is to update the membership function and fuzzy rule by using the information from the
training patterns, i.e., sets of input–output outcomes. The training algorithm resembles that in Refs. [12,16].
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It is worthy noted that, the adaptive-ANFIS handles smooth membership better than trapezoidal systems;
bell-shaped functions are employed to convert these inputs and output variables into linguistic control
variables. Usually, mAi

ðxÞ is chosen to be bell shaped with a maximum equal to 1 and minimum equal to 0,
such as

mAi
ðx : a; b; cÞ ¼

1

1þ jðx� cÞ=aj2b
, (27)

where fa; b; cg is the parameter set. Additionally, in this study, linguistic variables corresponding to large

negative (LN), small negative (SN), zero (ZE), small positive (SP), and large positive (LP) are used to represent
domain knowledge [16].

Consequently, the first order of the Takagi-Sugeno-Kang (TSK) model ANFIS structure containing 25
rules was considered. The bell-shaped membership functions with product inference rules were utilized at the
fuzzification level. The resulting vector is defuzzified by the first-order TSK model. To characterize the
controller, an ANFIS network with the fuzzifier processing two inputs, the rule base containing 25 rules and
Fig. 3. Rule view for fuzzy tracking controller.

Fig. 4. Control surface view of the proposed fuzzy system.
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the defuzzifier comprising one output was trained. Fig. 3 displays the rule view window for FTC. Fig. 4
presents the control surface view of the proposed fuzzy system. More detail discussion of the fuzzy controller
and ANFIS procedure, please refer to the previous of the authors work [12,16].

4.2. Boundary-layer stabilizer (active damping controller)

The boundary-layer stabilizer (or active damping controller), uf, is selected to stabilize the fast subsystem
(26). Since the fast subsystem is only a linearization of oscillatory dynamics induced by the slow manifold x̄,
the fast control law is used to stabilize the inverse system dynamics. Therefore, uf can be designed as a PD
control for the boundary layer. Therefore, we propose the control law

uf ¼ �KB; B ¼ ½B1 B2�
T. (28)
Fig. 5. Block diagram of the hybrid system.

Drive Box
Control Card Computer

Link 1

Link 2

Servo Motor 1

Servo Motor 2 

Encoder

Encoder

Piezo sensor

Fig. 6. Schematic diagram of control experiment.
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With a proper (positive) K, a damped vibration system is obtained, and, hence, vibration suppression will
be guaranteed. The damping of the base oscillation can be adjusted by modifying the control gain K.
The composite control scheme is adopted. By combining the slow control component ū and fast control
Table 1

System parameters

Parameter Value Parameter Value

m2 0.3872 kg m2 0.1194 kg

a2 0.155m a2 0.145m

Mb 3.027 kg Kb 800N/m

Fig. 7. Overview of experimental system.
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component uf, the system follows the desired joint trajectory and suppresses base vibration. Fig. 5 presents a
block diagram of the hybrid system.

5. Experimental implementation

The test bed at Ching Yun University consists of a two-link rigid manipulator mounted on an oscillatory
base (Fig. 6). Fig. 7 shows an overview of experimental system. Two servomotors (provided by Panasonic and
Maxon) are attached to each joint with optical encoders for measuring the position of the motor shaft. Optical
encoders are used as position feedback devices for sensing the angular displacement of the motor shaft.
Moreover, base compliance was achieved with four linear springs (stiffness 200N/m for each spring). Base
vibration is measured using a PCB PIEZOTRONICS Model 208C01 force sensor, which is attached on the
oscillatory base face. The input torque to the manipulator system is derived by the computer based on the joint
and base displacements, and is sent through a digital/analog (D/A) board to amplifiers driving current to the
motors in the joints. Test results are acquired using the aforementioned procedures, MATLAB and Simulink.
Table 1 lists system parameters. As each link moved, the base oscillated due to compliance. Since the
manipulator is attached at a pivot joint, its base exhibits translation and rotation as each link moves.
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Fig. 9. Experimental results for tracking error under step pulse trajectory (link 1).
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However, these two motions are not independent. Thus, controlling translational oscillation implies
controlling rotational motion at the same time in this case. Therefore, for feedback controller design, only
base translation is considered in this experiment.

6. Results and discussions

This section presents overall experimental results for the proposed controller for such a robotic system. To
verify the controller’s performance, some step pulse input real-time experiments carried out for the proposed
control scheme are described. The desired step input was taken as one radian amplitude and 1 period second
for link 1 and 2, respectively (Fig. 8). The calculation for controlling results is according to procedures in
Sections 3 and 4.

Figs. 9 and 10 present the joint angle errors with fuzzy tracking control and a boundary-layer stabilizer
(damping controller) for link 1 and link 2, respectively. A pure FTC can achieve good transient tracking
performance (Fig. 9) for link 1 tracking control. Fig. 9(b) denotes the fine scale for tracking performance at
0–3 s. However, Fig. 9 indicates that pure FTC causes a large overshoot during the transition. In such a case,
the control system is subjected to severe chattering due the base oscillation. To reduce the overshoot, the
boundary-layer stabilizer was applied. This experimental finding demonstrates that performance was
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Fig. 12. Tip position for circular desired path.
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improved markedly for joint angle y1 when the boundary-layer stabilizer was applied (Fig. 9). The maximum
overshoot was reduced considerably.

Fig. 10 displays the tracking response for joint angle y2. There was a little improvement in the joint tracking
when the boundary-layer stabilizer was applied. The steady-state error was reduced from 1.3e�2 (without the
boundary-layer stabilizer) to 5.4e�3 (with the boundary-layer stabilizer) from 5 to 8 s (Fig. 10(b)). This
experimental finding proves that the active damping controller reduces joint angle steady-state tracking error
owing to uncontrolled vibration by approximately 58.5%. These experimental results demonstrate that the
proposed control system achieves excellent tracking performance and satisfactorily attenuates disturbances
due to base oscillation.

Base vibration was measured from the PCB PIEZOTRONICS Model 208C01 force sensor. Fig. 11 presents
experimental results for base vibration with and without the boundary-layer stabilizer. The effectiveness of
vibration suppression was confirmed when the boundary-layer stabilizer was applied. Figs. 11(b)–(d) presents
the transient responses during [6, 6.25], [7, 7.25], and [8, 8.25] s. The maximum overshoot was clearly reduced
once the boundary-layer stabilizer was introduced. Additionally, the steady-state base oscillation displacement
was reduced from 1.5e�1 (without the boundary-layer stabilizer) to 3.1e�2 (with the boundary-layer
stabilizer) from 6.25 to 7 s, a reduction vibration of 79.8% in settling time (Fig. 11(e)). Moreover, the
normalized root-mean-square (rms) base oscillation sensor output voltage was reduced from 0.632 to 0.382,
revealing that the proposed active damping controller reduces displacement due to uncontrolled vibration by
roughly 40%. These experimental results verify the effectiveness of the proposed control methodology for
minimizing base oscillatory vibration in the time domain. The active damping control action considerably
diminishes the overshoot, and significantly reduces the steady-state error in settling time, demonstrating that
the convergence rate is faster with than without the boundary layer stabilizer.

Next, a circular motion with a radius of 30 cm was given as an end-point desired trajectory with 3 s of travel
time. The desired step input was taken as 2p radian amplitude and 1 period second for link 1, and 0 amplitude
for link 2, respectively. Therefore, for the two-link revolute joint robotic arm, the tip of the arm link can be
assumed to track the circle of the radius 30 cm. The desired joint motions (Fig. 12) show the tip position
response for the circular motion. The solid line (black) is the desired endpoint trajectory. The dashed line (red)
is the tracking performance with the boundary-layer stabilizer, and the dash–dotted line (blue) represents the
tracking performance without the boundary-layer stabilizer. Comparing experimental results, the red line
drew a more perfect circle as it did not oscillate as much as the blue line. The normalized rms tracking error
was also reduced from 0.447 to 0.155, approximately a 65.3% reduction. These experimental results indicate
that effective tracking performance was achieved and base oscillation can be eliminated. We conclude that the
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controller was effective while the boundary-layer stabilizer. Consequently, the proposed control scheme
addresses joint tracking performance, and enhances Cartesian endpoint accuracy.
7. Conclusions

An active damping controller for a manipulator mounted on an oscillatory base is proposed in this
paper. A first investigation of two-time scale fuzzy logic controller plus stabilizer for such structures has been
proposed, where the dynamics of a robotic system is strongly affected by disturbances due to the base
oscillation. The fast-subsystem controller will damp out the vibration of the oscillatory bases using a PD
control method. Hence, the slow-subsystem fuzzy logic controller dominates the trajectory tracking. It can be
guaranteed that the stability of the internal dynamics by adding a boundary-layer correction based on
singular perturbations approach. The proposed active damping control action considerably diminish the
overshoots, significantly reduces the steady-state error in settling time, demonstrating that the convergence
rate is faster than without the boundary-layer stabilizer. Consequently, the control design method proposed
for this structure is found to be promising. The results of this study can be feasible to various mechanical
systems, such as mobile robot, gantry cranes, underwater robot, and other dynamic systems mounted on
oscillatory bases.
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Appendix A

As seen from Fig. 2, the position vector of links 1 and 2 can be shown as the below:

x1 ¼ a1 cos y1; y1 ¼ a1 sin y1 þ xb;

x2 ¼ a1 cos y1 þ a2 cosðy1 þ y2Þ; y2 ¼ a1 sin y1 þ a2 sinðy1 þ y2Þ þ xb:

The velocity vector for each link is

_x1 ¼ �a1
_y1 sin y1; _y1 ¼ a1

_y1 cos y1 þ _xb;

_x2 ¼ �a1
_y1 sin y1 � a2ð

_y1 þ _y2Þ sinðy1 þ y2Þ; _y2 ¼ a1
_y1 cos y1 þ a2ð

_y1 þ _y2Þ cosðy1 þ y2Þ þ _xb:

The kinetic energy for the oscillatory bases Kb ¼
1
2
Mb _x

2
b

The kinetic energy for link 1

K1 ¼
1
2
m1ð _x

2
1 þ _y2

1Þ ¼
1
2
m1ða

2
1
_y
2

1 þ _x2
b þ 2a1y1 _xb cos y1Þ.

The kinetic energy for link 2

K2 ¼
1
2
m2ð _x

2
2 þ _y2

2Þ ¼
1
2
m2½a

2
1
_y
2

1 þ a2
2ð
_y1 þ _y2Þ

2
þ 2a1a2ð

_y
2

1 þ
_y1 _y2Þ cos y2

þ 2a1
_y1 _xb cos y1 þ 2a2 _xbð

_y1 þ _y2Þ cosðy1 þ y2Þ þ _x2
b�.

The potential energy for the oscillatory bases Pb ¼
1
2
Kbx2

b

The potential energy for link 1 P1 ¼ mgy1 ¼ m1gða1 sin y1 þ xbÞ.
The potential energy for link 2 P2 ¼ m2gy2 ¼ m2g½a1 sin y1 þ a2 sinðy1 þ y2Þ þ xb� .
The equations of motion are derived using Lagrangian formulation

d

dt

dL

d _X
�

dL

dX
¼ t, (5)0
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where the Lagrangian L ¼ (K1+K2+Kb)�(P1+P2+Pb) is the difference between the kinetic and potential
energies, X ¼ ½qT xT

b �
T.

Consequently, the overall dynamics equation of a two-link planar elbow arm mounted on an oscillatory
base is the same as that in Eq. (4), where the joint variable is ¼ ½y1 y2�T, and generalized force vector is
t ¼ ½u1 u2�

T with u1 and u2 torques supplied by actuators.
Additionally, the symbolic terms in Eq. (4) are

Mr ¼
ðm1 þm2Þa

2
1 þm2a

2
2 þ 2m2a1a2 cos y2 m2a

2
2 þm2a1a2 cos y2

m2a2
2 þm2a1a2 cos y2 m2a

2
2

" #
,

Mb=r ¼ m1 þm2,

MT
br ¼ ðm1 þm2Þa1 cos y1 þm2a2 cosðy1 þ y2Þ m2a2 cosðy1 þ y2Þ

� �
,

Cbr ¼ � ðm1 þm2Þa1
_y
2

1 sin y1 �m2a2ð
_y1 þ _y2Þ

2 sinðy1 þ y2Þ þ ðm1 þm2Þgxb,

Cr ¼
�m2a1a2ð2_y1 _y2 þ _y

2

2Þ sin y2 þ ðm1 þm2Þga1 cos y1 þm2ga2 cosðy1 þ y2Þ

m2a1a2
_y
2

1 sin y2 þm2ga2 cosðy1 þ y2Þ

2
4

3
5,

Cb=r ¼
�ðm1 þm2Þa1 _xb

_y1 sin y1

0

" #
,

where we assume that the link masses m1 and m2 are concentrated at the ends of the link, and a1 and a2 are link
lengths, respectively [12].

Consequently, manipulator dynamics are strongly impacted by nonlinear forces due to base oscillation and
its nonlinearity; these include gravity, Coriolis, and centrifugal forces, which are typically intrinsic to a
mechanical system.
References

[1] A. Sharon, D. Hardt, Enhancement of robot accuracy using end-point feedback and a macro–micro manipulator system, Proceedings

of the 1984 American Control Conference, San Diego, 1984, pp. 1836–1842.

[2] D.W. Cannon, D.P. Magee, W.J. Book, Experimental study on micro/macro manipulator vibration control, Proceedings of the IEEE

International Conference on Robotics and Automation, Minneapolis, MN, 1996, pp. 2549–2554.

[3] M. Toda, Robust control for mechanical systems with oscillatory bases, Proceedings of the IEEE Conference Systems, Man, and

Cybernetics 2 (1999) 878–893.

[4] D.N. Nenchev, K. Yoshida, M. Uchiyama, Reaction null-space based control of flexible structure mounted manipulator systems,

Proceedings of the 35th Conference on Decision and Control, Kobe, Japan, 1996, pp. 4118–4123.

[5] D.N. Nenchev, K. Yoshida, P. Vichitkulsawat, A. Konno, M. Uchiyama, Experiments on reaction null-space based decouple control

of a flexible structure mounted manipulator system, Proceedings of the of IEEE Conference on Robotics and Automation, Albuqerque,

New Mexico, 1997, pp. 2528–2534.

[6] D.P. Magee, W.J. Book, Filtering micro-manipulator wrist commands to prevent flexible base motion, Proceedings of the American

Control Conference (1995) 924–928.

[7] J.Y. Lew, S.-M. Moon, Acceleration feedback control of compliant base manipulators, Proceedings of the 1999 American Control

Conference, San Diego, CA, 1999, pp. 1955–1959.

[8] J.Y. Lew, S.-M. Moon, A simple active damping control for compliant base manipulators, IEEE/ASME Transactions on

Mechatronics 6 (3) (2001) 305–310.

[9] L.E. George, W.J. Book, Inertial vibration damping control of a flexible base manipulator, IEEE/ASME Transactions on

Mechatronics 8 (2) (2003) 268–271.

[10] K. Yoshida, D. Nenchev, M. Uchiyama, Vibration suppression and zero reaction maneuvers of flexible space structure mounted

manipulators, Smart Materials and Structure 8 (6) (1999) 847–856.

[11] W. Book, J. Loper, Inverse dynamics for commanding micromanipulator inertial forces to damp micromanipulator

vibration, Proceedings of the IEEE Robot Society of Japan International Conference On Intelligent Robots and Systems 2 (1999)

707–714.

[12] J. Lin, A hierarchical supervisory fuzzy controller for robot manipulators with oscillatory bases, FUZZ-IEEE 2006, Vancouver, BC,

Canada, July 16–21, 2006, pp. 10861–10868.

[13] J. Lin, F.L. Lewis, Two-time scale fuzzy logic controller of flexible link robot arm, Fuzzy Sets and Systems 139 (1) (2003)

125–149.



ARTICLE IN PRESS
J. Lin et al. / Journal of Sound and Vibration 304 (2007) 345–360360
[14] J. Lin, Hierarchical fuzzy logic controller for a flexible link robot arm performing constrained motion tasks, IEE Proceedings—

Control Theory and Applications 150 (4) (2003) 355–364.

[15] P.V. Kokotovic, H.K. Khalil, J. O’Reilly, Singular Perturbation Methods in Control: Analysis and Design, Academic Press, New York,

1986.

[16] J. Lin, A vibration absorber of smart structures using adaptive networks in hierarchical fuzzy control, Journal of Sound and Vibration

287 (4) (2005) 683–705.


	An active damping control of robot manipulators with oscillatory bases by singular perturbation approach
	Introduction
	System configuration
	Singular perturbation approach
	Inverse system dynamics
	A singular perturbation approach

	Controller design
	Fuzzy tracking controller (FTC)
	Boundary-layer stabilizer (active damping controller)

	Experimental implementation
	Results and discussions
	Conclusions
	Acknowledgments
	References


